The adapter protein ZIP binds Grb14 and regulates its inhibitory action on insulin signaling by recruiting protein kinase Czeta.

نویسندگان

  • Bertrand Cariou
  • Dominique Perdereau
  • Katia Cailliau
  • Edith Browaeys-Poly
  • Véronique Béréziat
  • Mireille Vasseur-Cognet
  • Jean Girard
  • Anne-Françoise Burnol
چکیده

Grb14 is a member of the Grb7 family of adapters and acts as a negative regulator of insulin-mediated signaling. Here we found that the protein kinase Czeta (PKCzeta) interacting protein, ZIP, interacted with Grb14. Coimmunoprecipitation experiments demonstrated that ZIP bound to both Grb14 and PKCzeta, thereby acting as a link in the assembly of a PKCzeta-ZIP-Grb14 heterotrimeric complex. Mapping studies indicated that ZIP interacted through its ZZ zinc finger domain with the phosphorylated insulin receptor interacting region (PIR) of Grb14. PKCzeta phosphorylated Grb14 under in vitro conditions and in CHO-IR cells as demonstrated by in vivo labeling experiments. Furthermore, Grb14 phosphorylation was increased under insulin stimulation, suggesting that the PKCzeta-ZIP-Grb14 complex is involved in insulin signaling. The PIR of Grb14, which also interacts with the catalytic domain of the insulin receptor (IR) and inhibits its activity, was preferentially phosphorylated by PKCzeta. Interestingly, the phosphorylation of Grb14 by PKCzeta increased its inhibitory effect on IR tyrosine kinase activity in vitro. The role of ZIP and Grb14 in insulin signaling was further investigated in vivo in Xenopus laevis oocytes. In this model, ZIP potentiated the inhibitory action of Grb14 on insulin-induced oocyte maturation. Importantly, this effect required the recruitment of PKCzeta and the phosphorylation of Grb14, providing in vivo evidences for a regulation of Grb14-inhibitory action by ZIP and PKCzeta. Together, these results suggest that Grb14, ZIP, and PKCzeta participate in a new feedback pathway of insulin signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation and functional roles of Grb14.

Grb14 is the last described member of the Grb7 family of adaptors, containing Grb7, Grb10 and Grb14. These proteins share a series of conserved domains involved in protein-protein and protein-lipid interactions: an amino terminal proline-rich region, a C-terminal SH2 domain, and a central GM region containing a RA, a PH domain, and a newly described PIR (BPS) region. As shown for the other memb...

متن کامل

The adaptor protein Grb14 regulates the localization of 3-phosphoinositide-dependent kinase-1.

The metabolic actions of insulin are transduced through the phosphatidylinositol 3-kinase pathway. A critical component of this pathway is 3-phosphoinositide-dependent kinase-1 (PDK-1), a PH domain-containing enzyme that catalyzes the activating phosphorylation for many AGC kinases, including Akt and protein kinase C isozymes. We used a directed proteomics-based approach to identify the adaptor...

متن کامل

Protein Kinase C (PKC)ζ Pseudosubstrate Inhibitor Peptide Promiscuously Binds PKC Family Isoforms and Disrupts Conventional PKC Targeting and Translocation.

PKMζ is generated via an alternative transcriptional start site in the atypical protein kinase C (PKC)ζ isoform, which removes N-terminal regulatory elements, including the inhibitory pseudosubstrate domain, consequently rendering the kinase constitutively active. Persistent PKMζ activity has been proposed as a molecular mechanism for the long-term maintenance of synaptic plasticity underlying ...

متن کامل

Grb10 and Grb14: enigmatic regulators of insulin action--and more?

The Grb proteins (growth factor receptor-bound proteins) Grb7, Grb10 and Grb14 constitute a family of structurally related multidomain adapters with diverse cellular functions. Grb10 and Grb14, in particular, have been implicated in the regulation of insulin receptor signalling, whereas Grb7 appears predominantly to be involved in focal adhesion kinase-mediated cell migration. However, at least...

متن کامل

The Role of Fetuin-A in Diabetes and Obesity: The Mechanism and Action

Fetuin-A is a phosphorylated glycoprotein produced by liver.It by binding to calcium ion inhibits ectopic calcium deposition and protects vascular calcification. Fetuin-A acts as a multifactorial protein and its role has been documented from brain development to bone remodeling and immune function, regulation of insulin activity, hepatocyte growth factor activity and inhibition lymphocyte blast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 22 20  شماره 

صفحات  -

تاریخ انتشار 2002